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PREFACE 

 
 

 

The main purposes of this study were to investigate and to quantify the efficiency of 

the wave damping properties of swimming lines. The major role of a swimming line 

is not only to separate the pool into different lanes but most importantly to damp the 

waves in an effective way.  

 

Despite being a topic of increased interest, few investigations could be found 

concerning swimming lines, especially regarding experimental work on their 

hydrodynamic properties.  

 

The first part of this thesis consists of a brief overview of hydrodynamic concepts 

and the forces acting on swimmers. Furthermore, some properties of the waves 

generated by swimmers and characteristic coefficients of the swimming lines 

(transmission and damping coefficients) are defined. 

 

The second part is a complete description of the experimental procedure employed 

to analyse the efficiency of the swimming lines. It includes explanations about the 

setup, the cases investigated, the image analysis, and some explanation of the 

analysis performed. 

 

In the last part, the results from the data analysis are presented and discussed. The 

influence of each parameter is studied and analysed in detail regarding the 

properties of the swimmer, such as the speed or stroke style, and the characteristics 

of the waves generated by the swimmer, such as the period and height. Also, the 

effects of the swimming lines on the waves are investigated, including the 

transmission coefficient, the damping coefficient, type of swimming line, and the 

tension in the wire holding the line. 

 

Some general principles were derived from all these observations and results. The 

main conclusions of this thesis were: 

 

 The damping efficiency of the swimming line increases linearly with the 

diameter (over the range studied). 

 The damping efficiency of swimming lines increases considerably for 

swimmers at high velocities and for waves with large heights. 

 Further experiments should be pursued on a wider scale with some 

technical modifications in order to confirm the results obtained in this 

study. 
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1 Introduction 
 

1.1 Background 

In the increasingly professionalized world of swimming, beyond the sheer technique 

and fitness of swimmers, considerable effort has been put into altering and 

optimizing the swimmer’s surroundings, most notably in terms of infrastructure and 

equipment. 

New swimsuits and building larger or deeper swimming pools are all methods that 

can be used to help swimmers go faster. Similarly, the use of swimming lines is 

another crucial tool that can optimize one’s swimming speed. We will turn our 

attention to the properties of these swimming lines, which ensure that swimming 

lanes are less turbulent by damping the waves from the swimmers, and hence 

enabling a swimmer to swim with the water flow and not against it.  

While originally created to simply separate different lanes in a pool and to prevent 

swimmers from swimming in each other’s lanes, swimming lines are now playing 

another essential role due to their wave-damping properties – a topic that has 

attracted little attention so far from researchers and academia. Nevertheless, in a 

sport where every hundredth of a second counts, controlling the wave action and 

thus offering a more stable swimming platform, is slowly but surely becoming a 

topic of increased interest in the world of swimming.  

 

1.2 Objectives 

 

The main objective of this thesis is to investigate the efficiency of swimming lines 

in damping waves generated by swimmers. Swimming lines consist of a string of 

floaters used to separate the different lanes in swimming pools, especially during 

competitions. The focus of the present study is to analyse and test the properties of 

swimming lines, particularly with regard to their ability to dampen waves from the 

swimmer, avoiding wave transmission into neighbouring lanes as well as wave 

reflection back into the lane of the swimmer generating the waves. More efficient 

swimming lines would therefore allow the swimmer to compete under the same 

conditions, and not be affected by the waves generated by his/her competitors. 

 

The study will determine the characteristics of the waves generated by the swimmer 

and how these waves are transformed as they impinge upon the swimming line. The 

transmission coefficient will be calculated based on experimental data and the 

overall wave-damping efficiency of swimming lines will be assessed. In order to 
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conduct this study, swimming lines manufactured by the company Malmsten AB 

were employed in the different experiments carried out. The response of the 

swimming lines to waves generated by several swimmers swimming at different 

speeds while performing different types of strokes, that is, crawl, breast, backstroke, 

and butterfly, will also be studied. 

 

1.3 Procedure 

The study encompassed the following main parts: 

 

A review of appropriate literature was carried out, including literature on 

swimming lines and waves generated by swimmers. Since the former literature is 

rather limited, especially with regard to the wave-damping properties, the main data 

in the present study will be obtained through laboratory experiments under 

prototype conditions in a swimming pool. The water level variation at several 

locations around the swimming line was recorded as swimmers passed by using 

different types of strokes and varying their speed. The water level was recorded 

using video cameras followed by image processing techniques. 

 

The experimental data on water level variations collected during the laboratory 

experiments were analysed in terms of different wave properties. Using the 

“multiple frame per second” camera mode, each time a swimmer passed next to the 

prototype, a series of 30 pictures during 3 seconds was taken. Performing such 

analysis repeatedly provided a basis for estimating values on the transmission 

coefficient of the swimming lines. Such coefficient values were determined for 

different strokes, swimmers of different size swimming at varying speeds, as well as 

for two types of swimming lines. 

 

In the data analysis, the influence of each parameter was studied and evaluated, 

whether it concerned the swimmer, such as his speed or his stroke style, the waves 

generated by him/her, such as the period and height, or whether it was about the 

swimming lines, such as the transmission coefficient, the damping coefficient, the 

type of swimming lines or the tension in the wire holding it. 

 

Some general principles were derived from all these observations and results, and 

some suggestions are given for future studies and regarding the potential 

improvements of the current design of the swimming lines. 
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2 Hydrodynamics of Swimming  
 

2.1 Basic hydrodynamic concepts 

"The water is your friend [...] you don't have to fight with water, just share the same 

spirit as the water, and it will help you move". Alexandr Popov, a famous Russian 

sprinter dubbed “The Tsar” - double Olympic champion in the nineties - was 

describing this complex interaction between swimmers and water. Despite the rather 

philosophical and inspirational nature of Popov’s statement, his views overlap with 

a clear observation: swimmers should swim with the water and not against it, in 

order not to waste energy caused by a flawed coordination in the movement, a 

faulty technique, or wrong timing. This complex interaction between swimmers and 

water could be further discussed through the study of hydrodynamics of swimming 

and fluid dynamics on a wider scale.  

 

Hydrodynamics can be defined as the scientific study of the motion of water, under 

the influence of internal and external forces, and it has been a rather popular 

research topic in swimming for the past three decades. However, despite the 

increased interest among swimming coaches, scientists, and admirers, and despite 

the fact that it plays a crucial role in swimming and swimmers’ performances, 

studies on the hydrodynamics of swimming are still scarce and limited. As the 

human body’s movement is so elaborate and complicated compared to all other 

swimming mammals, its efficiency can always be enhanced with the help of 

research, experiments, and the use of new technologies. 

 

For instance, recent research (Marinho et al., 2009) have shown that even the 

position of one’s thumb during swimming - displayed in figure 2 -, whether it is 

fully abducted, partially abducted, or not abducted, can have considerable effects on 

the swimmer’s propulsion and speed. It was shown that at times when the angle of 

attack of the arm - illustrated in figure 1 - is between 0˚ and 45˚, the fully abducted 

position of the thumb is the most efficient, whereas when the angle of attack is 90˚ 

the abducted position of the thumb results in a better performance. 
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Figure 2: Models of the hand with 

different thumb positions: (from 

left to right) fully abducted, 

partially abducted, and non-

abducted (Marinho et al., 2009). 

 

Hence, a relatively minor detail such as one’s thumb position can have a significant 

impact on the swimmer’s speed.  

Bearing in mind Marinho’s research, the main aim of hydrodynamics and fluid 

dynamic studies in this context is to help understand the human body movement 

under water in a way that propels motion and decreases energy losses. 

 

By teaching young swimmers the proper swimming techniques, they will acquire all 

the appropriate tools, which will allow them to swim more proficiently. As a result, 

their overall performance will drastically improve in the long term. 

 

One of the most important factors in order to improve our understanding of 

hydrodynamics of swimming is none other than the general flow conditions, which 

can be laminar or turbulent. On one hand, “a laminar flow is a flow in which the 

water travels smoothly and rectilinearly, without any disturbance […] consisting of 

thin horizontal layers or laminae” (Vorontsov and Rumyantsev, 2008). Laminar 

flow often occurs for streamlined profiles at low velocities.  

 

On the other hand, for a high amount of frictional and pressure forces - due to 

viscosity and flow separation, respectively - around the swimmer moving at high 

speed, the probability of turbulence occurring increases considerably, as shown in 

figure 3. “The turbulent flow is characterized by the random three-dimensional 

motion of fluid particles superimposed to the mean motion” (Naemi et al., 2010). 

 

Figure 1: The angle of attack of a swimmer’s hand 

(Schleihauf, 1979). 
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Figure 3: Turbulence in the form of vortices created behind an object in an 

originally laminar flow (Hill, 2012). 

 

In order to determine whether the flow conditions are laminar or turbulent, one can 

refer to the Reynolds number (Re), which can be seen as the ratio between the 

inertial forces and the viscous forces. The Reynolds number Re is defined as: 

 

   
     

 
                      (1) 

 

Where    : The fluid density 

              : The flow velocity 

             L: The length of the object in the direction of the flow 

              : The coefficient of dynamic viscosity 

 

For a smooth plate without irregularities          is the transition limit between 

a laminar and a turbulent flow. If a swimmer swims at approximately 2.5 m/s and if 

we assume the limiting Re number remains the same, only the hands of a swimmer 

will be in a laminar flow and the rest of the body will be in a turbulent flow (Naemi 

et al., 2010). Therefore, it is crucial to consider turbulence when evaluating the drag 

force on the swimmer. 
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There are four main forces acting on a human body under water that play a 

significant role in swimming. Indeed, when swimming, each swimmer is subjected 

to his own weight, buoyancy, thrust and drag/resistance, as shown in figure 4. 

 

 

 

 

Figure 4: The four main forces acting on a swimmer (FINA, 2007). 

 

These forces depend on several parameters such as the body surface characteristics, 

the depth of the swimmer below the still water surface, the swimming technique, the 

body size, and physical attributes of each swimmer, to name a few. 

 

On one hand, the vertical forces, that is, buoyancy and weight will compensate each 

other. Archimedes Principle best describes this premise: “the buoyant force on a 

submerged object is equal to the weight of the fluid that is displaced by the object”. 

(Fairman, 1996). The buoyancy force will balance the swimmer’s gravity, pushing 

him down and displacing water from its original state. 

 

Weight force: 

 

                         (2) 

  

 

Where m: mass of the swimmer (kg) 

 g: acceleration due to gravity (             
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Buoyancy force: 

 

                           (3) 

 

Where V: volume of displaced water (    

            g: acceleration due to gravity (      
 

  
   

             : fluid density (
  

  ) 

 

NB: The fluid in this case is water, which has a density that varies with temperature 

and the water composition. The density of water is approximately     
  

  . 

 

However, it increases up to approximately     
  

   in ocean water mainly due to 

the higher salinity of water. This is why it requires less force to float in the ocean 

compared to swimming pools. 

  

One the other hand, horizontally, the thrust propulsive force and the drag resistive 

force act on the swimmer. These forces will be discussed thoroughly as they are 

arguably the most important factors influencing a swimmer’s performance. 

 

 

2.2 Resistance 

2.2.1 Introduction 

 

The drag force, also known as the resistance force, acts in the opposite direction to 

the motion of the swimmer. This force is responsible for slowing down the 

swimmer. There are three main reasons or factors causing the resistance to develop. 

 

First, water is a difficult medium to move through since its viscosity at 20˚C is 

around 0.001 Pa∙s, which is approximately 55 times higher than air at the same 

temperature (Kestin, 2004). Moreover, additional resistance will be created at 

higher speeds because of the turbulent conditions associated with flow separation 

around the body. Finally, the waves generated by swimmer at the water surface, 

controlled by the gravitational forces, will also contribute to the drag force 

(Toussaint et al., 2000). 

 

These three resistance forces, known as skin drag, pressure drag, and wave drag, 

respectively, generally depend on the flow conditions but they are also correlated 

with the body characteristics. 
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In the available literature, hydrodynamic resistance is often divided into two major 

categories and the distinction is made between the “passive resistance” and the 

“active resistance”. “Passive resistance is that experienced by a swimmer’s body 

during passive towing […] and when performing gliding without movement; and 

active resistance is that experienced by a swimmer during swimming” (Vorontsov 

and Rumyantsev, 2008). 

 

One should note that both type of resistances (passive and active) include the three 

main components: skin drag, pressure drag, and wave drag.  

 

2.2.2 Skin drag  

 

The skin drag, also called frictional resistance, can be explained through the 

boundary layer theory. This theory is based on the following schematization: the 

area around the body is separated into two regions (see figure 5). The first region 

very close to the swimmer’s body is called the boundary layer, whereas the other 

region is located further away from the swimmer’s body where the velocity reaches 

the ’free stream’ value. 

 

The boundary layer is defined as the part of the flow adjacent to the body where the 

effect of viscosity is important (Naemi et al., 2010) and where the water is trying to 

’stick’ to the swimmer’s body. Therefore, the flow velocity is zero at the surface, 

which is considered as the first layer of the flow, and the water travels at the same 

speed as the swimmer. However, at an increasing distance from the surface and due 

to the viscosity of water, this first layer will drag along its neighbouring layers and 

try to slow them down and cause a delay in the movement of the layers. This 

phenomenon will persist in the whole boundary layer region until the flow velocity 

reaches the free stream value. At this distance, the effect of viscosity becomes 

negligible since all layers have the same velocity. ”The greater the amount of water 

a swimmer trails behind him, the greater is the frictional resistance” (Vorontsov and 

Rumyantsev, 2008). 

 

The skin drag occurs in both passive and active swimming. Nonetheless, during 

active swimming, when the swimmer has a high velocity, turbulence occurs in the 

form of eddies in the boundary layer. This will increase the energy losses and 

hamper the swimmer’s performance. 
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Figure 5: Boundary layer development in laminar and turbulent flow (Riyeka, 

2011). 

 

Turbulence plays a crucial role in swimming competitions since an increase of the 

turbulence is accompanied by an increase in the hydrodynamic resistance. 

Therefore, in order to avoid it, swimmers may try to have a smoother body surface 

by shaving or by using innovative and sophisticated swimsuits made out of ultra-

thin elastic fabrics.  

 

2.2.3 Pressure drag 

 

The pressure drag, or form drag, can be defined as the resistance caused by the 

difference of pressure between the front and the rear of the swimmer’s body 

multiplied by the projected area. The pressure acting at the front is higher than the 

one in the wake of the body. Because of the flow geometry, the boundary layer that 

initially grows along the body suddenly slows down due deceleration causing 

adverse pressure gradients. Consequently, there is a separation of the flow from the 

body which will generate eddies and turbulence in the swimmer’s wake. One can 

therefore assume that favourable pressure gradients may maintain the flow along the 

body, delaying separation and the formation of eddies.  

 

According to studies made by both Vorontsov and Rumyantsev (2008) and 

Toussaint et al. (2000) the pressure drag is the product of the pressure difference 

and the area to which this pressure is applied (projected area), normally expressed 

in term of the swimmer’s speed: 
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     ( 
  

 
)                                                                     (4) 

 

Where    : Pressure drag (N) 

   : Coefficient of pressure drag 

   : Fluid density (
  

  ) 

             V: Swimming speed (
 

 
) 

   : cross sectional area or projected area (   ) 

  

 The coefficient of pressure drag    takes into consideration the geometry 

(streamline shape; see figure 6) of the body and the general flow conditions 

(normally described by the Reynolds number). It is approximately between 

0.05 and 0.08 for a Dolphin compared to 0.58 to 1.04 for a swimmer 

(Clarys, 1978). The Dolphins are considered to have streamlined bodies 

free of any pressures resistance centres such as the head, knees, heels, all of 

which drastically reduce the pressure resistance compared to human 

swimmers. 

 

 

Figure 6: Three submerged objects, which are respectively not streamlined, 

rounded, and streamlined (Larson, 2013). 

 

 The magnitude of the pressure drag depends on the square of the flow 

velocities, making the swimmer’s speed the most important parameter for 

the drag force. Indeed, if the body is moving at slow velocities, the 

boundary layers will be thicker and move slower. Therefore few eddies will 

be formed and the skin drag will be dominant over the pressure drag. On the 

contrary, if the body is moving at a high velocity, the boundary layers will 

be thinner and move faster. Therefore, the eddies will form rapidly, the 

separation between the front and the ’wake’ of the swimmer will occur 

faster, and the pressure drag will be dominant over the skin drag. 

 

 The cross-sectional projected area    plays an important role as well in the 

pressure resistance. In order to reduce it, swimmers try to keep a streamline 
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position, reduce the depth of leg kick and synchronize the rotation of hips 

and shoulders and other body parts. 

 

In practice, typically no separation is made between the contribution from skin 

friction and pressure drag when calculating the total drag force, but CD includes 

both effects. 

 

2.2.4 Wave drag 

The third resistive component is called wave drag or wave-making resistance. It acts 

on the body when a part of it is exposed on the surface since the swimmer is 

“wasting” energy when generating waves instead of using it to propel him/herself 

through the water. This energy is lost trying to lift the waves against gravity. 

 

Wave drag is related mainly to two important factors: the Froude number and the 

depth at which the body travels. 

 

The Froude number may be defined as: 

 

   
 

√  
                    (5) 

 

Where   g: gravity (      
 

  
   

 L: length of the body in the direction of the flow (m) 

             V: Swimming speed (
 

 
) 

 

It is believed that the wave drag increases with the Froude number. Hence, we can 

assume that taller swimmers have a slight advantage over shorter ones. Speed can 

be seen as a limiting factor because when a swimmer swims at a higher speed, he is 

increasing the probability of generating waves and wave drag resistance. 

 

It is understood that after reaching a sufficient swimming depth, the wave drag 

becomes negligible and the resistance is only due to skin drag and pressure drag. In 

order to better understand this concept, the body can be seen as an object forcing the 

fluid to move at his speed. The further from the surface this “obligation” occurs, the 

more likely will it not affect it. This interesting depth is assumed to be 

approximately three times the body thickness (Naemi et al., 2010). Thus, swimmers 

try to minimize this effect by swimming relatively deep below the surface when 

gliding at the start of the race, as well as at the turn. 
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2.3 Propulsion 

The hydrodynamic propulsion is arguably one of the most complex topics in sports 

biomechanics. Scientists and researchers have been looking at the flow generated 

around the swimmer in order to try to understand the complicated mechanical 

movements used by a swimmer under water. These mechanisms of thrust generation 

depend clearly on the stroke used by the swimmer (crawl, breast, backstroke, and 

butterfly, among others) and the athlete’s technique.  

 

It can be seen as a simple application of the Newton’s third law of action-reaction: 

The swimmer pushes the water backwards while the water exerts a force forward 

(Spathopoulos, 2013). 

 

There are many complex theories to try to understand the propulsive forces in 

swimming. Among them there is the ‘straight oar-like arm pull’, which is mostly 

based on Newton’s third law. Another one is the ‘vortex theory’ that is in general 

used in the analysis of swimming mammals and fish. However, the most widely 

accepted theory is the ‘lift and lift-and-drag’ (Vorontsov and Rumyantsev, 2008) 

 

The idea is to use lift and drag in order to maximize velocity. Therefore, a swimmer 

should try to maximize the distance travelled each stroke by pulling back his/her 

hands curved for instance or by having the right angle of attack of the arm. 

 

However, it is very hard to have a clear position on how to apply those principles. 

Each swimmer will develop in the end, his/her own techniques based on some 

natural instincts and advices given by coaches. Moreover, each stroke style requires 

very specific movements that differ a lot from each other. For instance, the butterfly 

stroke is very technical and requires a lot more coordination than the other stroke 

styles. 

 

In addition to that, swimmers need to manage well his/her effort during a race. In 

fact, a 50 m sprint will require much more power and strength compare to a 1500m 

race, which will require more endurance for the muscles used for the propulsion. 
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3 Swimming Lines 

 
3.1 Functioning and design 

 

Swimming lines or lane ropes are typically used in a swimming pools for two main 

reasons. Their initial role was to separate the pool into different parts or aisles to 

improve safety in general. However, a second and more important role for 

competitive swimming resides in their capacity to absorb the waves or to break 

them. During professional swimming competitions, this attribute allows the race to 

be even-handed among all swimmers. On the other hand, if swimming lines are 

inefficient or not present, swimmers will be slowed down by the waves generated 

from neighbouring swimmers. In this thesis, the focus will be on the second 

functionality of the swimming lines. The main goal is to quantify the efficiency of 

these lines to reduce the waves generated by different swimmers (body size and 

shape), strokes (crawl, breast, back and butterfly), and speeds. 

 

The study was made on the “competitor racing lanes” manufactured by the Swedish 

company Malmsten AB. This product has largely contributed to the success of the 

company, since it is its most exported product. It has also been used in most of the 

major Olympic competitions and championships for the last 35 years (see figure 7). 
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Figure 7: List of the sport events and competitions in which the Malmsten 

competitor racing lanes have been used (Malmsten, 2013). 
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Two different types of the competitor racing lanes were tested: the “standard” 

version and the “gold” version; the latter has a larger diameter and a more 

sophisticated design. 

 

The competitor racing lane gold studied, displayed in figure 8, has the following 

characteristics: 

 

 Diameter Ø =150mm  

 Weight of 115 kg (for a swimming pool of 50m)  

 Volume of 1.40m³ (for a swimming pool of 50m) 

 

 

Figure 8: Competitor Racing Lane Gold: 50m, Ø =150mm (Malmsten, 2013). 

 

The competitor racing lane standard studied, illustrated in figure 9, has the 

following characteristics: 

 

 Diameter Ø =100mm  

 Weight of 46 kg (for a swimming pool of 50m)  

 Volume of 0.6m³ (for a swimming pool of 50m) 
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Figure 9: Competitor Racing Lane Standard: 50m, Ø =100mm (Malmsten, 2013). 

 

 

3.2 Waves and hydrodynamic properties 

3.2.1 Wave characteristics 

 

According to the Oxford dictionaries
1
, a wave is “a periodic disturbance of the 

particles of a substance which may be propagated without net movement of the 

particles, such as in the passage of undulating motion, heat, or sound”.  Water 

waves illustrate the propagation of energy and momentum through water. A wave 

‘propagates’ through a medium because this phenomenon induces the transportation 

of energy/momentum and not physical matter or substance. Therefore, one cannot 

claim that a wave ‘moves’ through a medium. 

 

In order to understand the hydrodynamic properties of waves generated by 

swimmers, some tools and definitions should be given to describe a wave. The main 

characteristics of a wave which are the crest, the trough, the wave height, the wave 

length, and the period, which are all illustrated in figure 10. 

                                                      
1
 http://oxforddictionaries.com/definition/english/wave  

http://oxforddictionaries.com/definition/english/wave
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Figure 10: Illustration of wave properties (CEM, 2008). 

 

The crest can be defined as the highest part of the wave above the still-water line, 

whereas the trough is the lowest part below the still water line. The vertical distance 

between the crest and the trough - referred to as ‘H’ in figure 10 - is called the wave 

height. In addition, the wavelength - denoted by ‘L’ in figure 10 - is the distance 

between two consecutive crests, whereas the wave period is the time needed for a 

wave to propagate one wavelength. 

 

3.2.2 Hydrodynamic properties 

 

A wave, whether it is a light, acoustic, or water wave, will react similarly when 

facing an obstacle. A part of it will be reflected, another part will be transmitted, 

and the final part will be dissipated, as shown in figure 11. 

 

In order to quantify how a wave decomposes into these parts when it encounters the 

swimming lines, some characteristic coefficients were introduced. The relative 

contribution to the total wave from reflexion, transmission, and dissipation may be 

described by: 
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Figure 11: Transmission, reflexion, and dissipation of the wave. 

 

                                                                             (6)

   

Where      : Incident wave height 

     :  Transmitted wave height 

      : Reflected wave height 

    
    

   
  : Transmission coefficient                (7) 

 

The transmission coefficient is the ratio between the transmitted wave 

height over the incident wave height. 

    
        

   
        : Damping coefficient                               (8) 

 

The damping coefficient represents the part of the waves that have been 

damped or dissipated by the swimming lines. 
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    : Reflexion coefficient                                                  (9) 

 

The reflexion coefficient is ratio between the wave height reflected by the 

swimming lines over the incident wave height (assumed negligible in the 

present study). 

 

The transmission coefficient    will be determined experimentally from the 

prototype measurements, as explained in section 4. Therefore the damping 

coefficient    can be deduced since the reflexion coefficient    is assumed to be 

negligible. The large number of experimental cases performed showed that the part 

of the wave that is reflected by the swimming line is barely observable compared to 

the transmitted part, which was the basis for this assumption. 

 

The damping coefficient    is one of the most intriguing parameters discussed in 

this study since it enables us to show and quantify how efficient the swimming line 

studied is for different conditions. This is why manufacturers always try to design 

swimming lines with a higher damping coefficient. 
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4 Laboratory Experiments 

 
In this study, a system was designed and constructed in order to determine the 

wave-damping properties of swimming lines. The main objective behind the 

prototype built was to compare the waves generated by a swimmer before and after 

they impinged on the swimming line studied, in order to understand and quantify 

how efficiently these lines damp the waves.  

 

The laboratory experiments encompassed the following five main steps: 

 

1. Setup: building a steady prototype on which a camera is fixed to take 

pictures of the waves before and after damping 

 

2. Procedure: taking a series of 30 pictures during 3 seconds every time a 

swimmer passes by the camera, to analyse the wave-damping properties of 

the swimming lines.  

 

3. Cases investigated: The procedure is repeated for a large number of 

swimmers of different body shapes, swimming with several types of 

strokes, and at different speeds.  

 

4. Image processing: The pictures are collected and analysed. The water level 

variations are manually digitized for each picture in the time series and 

graphs are constructed for each series showing the wave evolution in time. 

 

5. Analysis: The properties of the waves are determined (wave height, length, 

and period) and analysed. The damping coefficient of the swimming line is 

calculated. The results for different experimental conditions are compared 

in order to find empirical relationships and deduce general hydrodynamic 

principles governing the wave damping. 

 

 
4.1 Setup 

 

4.1.1 Högevall pool 

 

All the tests were made in Högevallsbadet swimming pool (figure 12) located in 

Lund, Sweden, with the help and collaboration of Thorbjörn Holmberg and the 

swimmers of SK Poseidon swimming club. The pool is 25m long, 5m deep, and has 

8 lanes.  
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Figure 12: Högevallsbadet Swimming Pool (25m, 8 lanes). 

 

4.1.2 Camera and measurement system 

 

In order to analyse the hydrodynamics and the wave-damping properties of the 

swimming lines, an experimental setup had to be built. It was composed of an 

aluminium frame and wooden plates. This prototype was built in an attempt to film 

above the swimming lines the changes in the wave properties. In addition, the setup 

was equipped with a camera and four vertical bars with rulers to be able to quantify 

the observations. The camera used for recording the water surface was a GoPro 

HERO3 black edition (see figure 13). 

 

 

Figure 13: GoPro HERO 3 black edition camera used for the measurements (Gopro, 

2013). 
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This camera was fixed to the aluminium frame, which was stabilized on the edge of 

the swimming pool on one side and hanging above the swimming line on the other. 

This frame, shown in figure 14, consisted of three aluminium U beams with 

dimensions 0.6m 0.8m, and 3.5m. This frame had to fulfil two major requirements: 

 

 It had to be extremely stable in order to avoid vibration problems and to 

obtain clear pictures of good quality.  

 It had to be stiff enough and steady in order to overcome the deflection 

induced by the span of 2.45m between the border of the pool and the 

swimming line. 

 

Therefore three possibilities were considered: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Prototype composed of an aluminium framework and wooden 

plates for the experiments. 
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1.  A cable fixed to the ceiling of the pool, which would maintain the whole 

frame horizontal. 

 

This first option was efficient but quickly appeared problematic because of the 

height of the ceiling and the amount of time and effort required to install it. 

Therefore, the first option was discarded fairly quickly. 

 

2. A cylindrical bar made out of PVC placed in the water to support the edge 

of the prototype. 

This solution was relatively simple and easy to implement compared to the first one. 

After it was implemented, the results were not satisfactory. The waves generated by 

the swimmer under the water caused vibrations to the PVC supporting bar. These 

vibrations were transmitted to the whole structure, thus giving blurred and poor 

quality pictures that could not be used in the subsequent analysis. 

 

3. A stainless steel wire fixed to the extremity of the framework, which would 

be attached on an additional vertical bar placed on the edge of the pool. 

 

This last option was finally adopted in order to overcome both the vibrations and 

the stability problems. The stainless steel wire was attached to the vertical bar on 

the border of the pool with the help of two shackles and two turnbuckles, which 

gave the prototype a certain flexibility to adjust the tension in the wire. 

 

 

Figure 15: The edge of the prototype with the fixed camera and the red rulers. 
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Figure 15 shows the edge of the prototype with the Gopro HERO 3 camera fixed in 

the middle of the aluminium bar, which is parallel to the swimming lines. Two 

holes were drilled for the stainless steel wire to pass for the stability of the prototype 

and to remove the deflection caused by the long span of 2.25m covered. 

 

Four bars of 25cm each were used as rulers to determine the water level on the 

pictures taken. These bars were painted in red in order to have a better visibility. 

The diameter of the bars was only 5mm so that the wave height could be determined 

precisely enough. Wider bars would have decreased the precision of the 

measurements and might have induced some vibration in the structure. 

 

Finally, figure 15 shows two clamps to the left on the horizontal bar that were 

placed to compensate the weight of the rulers on the right and to have a steady, 

balanced setup. Consequently, it further increased the stability of the measurement 

system and contributed to obtain good quality pictures without any blur effect. 

 

4.2 Procedure 

During the experiments, the prototype was placed 10m away from the end of the 

pool to avoid unwanted effects of the reflected waves because of the turn. 

Swimmers were asked to swim at maximum velocity in lane number 2 while lane 

number 1 was kept empty as shown in figure 16.  

 

 

Figure 16:  Experimental procedure showing the swimmer, the measurement 

system, and the competitor racing lane gold. 
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Using the camera, tests were made employing different modes, and after several 

tests, it became clear that the “multiple frames per second” mode was the most 

adequate for the present study. Accordingly, each time a swimmer passed next to 

the prototype, a series of 30 pictures during 3 seconds was taken in order to capture 

the wave height evolution before and after the damping from the swimming line.  

 

4.3 Cases investigated 

The experiments were carried out during seven different days. Day 1 and 2 were 

used to adjust the setup and all the different parameters related to the testing. During 

day 3, 4 and 5 some amateur swimmers performed the tests, whereas during day 6 

and 7 more professional swimmers from SK Poseidon club took part in the 

experiment. Day 5 is the day when the ‘standard’ version of the competitor lanes 

was tested whereas for all the other days, the ‘gold’ version was used.  

 

The weight and the height of each swimmer were recorded in advance before the 

beginning of the tests. Moreover, the velocity of each swimmer was measured with 

a stopwatch. The type of stroke was also observed and written down for each series 

of 30 pictures. Swimmers were asked to swim at full speed the four main types of 

strokes: crawl, breast, back, and butterfly (for the advanced swimmers only). 

 

There are approximately 120 series of 30 pictures that were taken during the 

different days. Only 93 series were used and a detailed description of those series 

can be found in the appendices at the end of the report. The 27 series left were 

rejected due to some practical and technical problems (interference with waves 

coming from other swimmers in other lanes, vibration, and bad timing in pictures). 

 

As an example, Table 1 shows the results obtained during day 3. First, we find the 

basic information collected during each experimental case, such as the name of the 

swimmer, the type of stroke, the weight and height of the swimmer and the speed at 

which he/she was swimming. Second, we find the basic waves properties 

determined, which were obtained by the analysis of the pictures (explained in the 

section 4.4). Those properties are: 

 

Ti: period of the incident wave (before hitting the swimming line) 

To: period of the transmitted wave (after passing the swimming line) 

Hin:    Wave height of the incident wave
2
 

Hout: Wave height of the transmitted wave 

                                                      
2
 The maximum wave height was always chosen over all others that 

constituted the wave time series. This choice was made as the maximum 

wave height can be considered the most challenging for the lines. 
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Table 1: Summary of the information collected during the experiment on day 3. 

 

Each of the series has a name that distinguishes it clearly from the others: the first 

letter and number indicates the day the tests were made, going from d3 to d7. The 

next two letters indicate the type of stroke. The following two letters refer to the 

name of the swimmers. Finally, the last number indicates how many times the 

swimmer performed that specific stroke. 

 

All the series of day 7, which names end by number three are those for which the 

tension in the cable holding the swimming lines was increased with the purpose to 

analyse the effects of this parameter on the swimming line. The effects of the 

tension will be discussed in detail in section 5.6. 

 

 

4.4 Image processing  

In order to derive information on the absolute location of the water level from the 

images, some transformation of the data recorded from the images were needed. 

This transformation involved three main steps: 

 

1. Correction of the distortion: The images introduced were distorted due to 

the camera optics and for having placed the camera at an angle with regard 

to the plane in which the measuring bars were located. This was fixed using 

the software Photoshop CS6. 

 

 

2. Wave height selection: The images were digitized and the location of the 

water surface was selected manually on the red rulers (bars) for each picture 

using a routine from Matlab called ‘digitize07’.  

 

                                                      
3
 The properties of the waves for this series were calculated twice in order to 

perform a quality control on the procedure and image analysis. 

Series Stroke Name 
Height 
(cm) 

Weight 
(Kg) 

Speed 
(m/s) 

   
(s) 

   
(s) 

Hin 
(cm) 

Hout 
(cm) 

d3-cr-ra-1 Crawl Raphaello 180 75 0,83 0,6 0,8 7,02 1,84 

d3-cr-ra-1'3 Crawl Raphaello 180 75 0,83 0,6 0,8 7,03 1,84 

d3-cr-ra-2 Crawl Raphaello 180 75 0,89 0,6 0,7 5,83 2,75 

d3-cr-ra-3 Crawl Raphaello 180 75 0,78 0,5 0,6 5,8 1,26 

d3-cr-ra-4 Crawl Raphaello 180 75 0,89 1 1 7,52 3,32 
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3. Conversion from digitized into real coordinates: the corrected coordinates 

recorded in the image analysis were converted to real-world coordinates by 

using known fixed distances obtained from markings on the vertical bars. 

 

4.4.1 Correction of the distortion 

 

The mode selected with the camera gave pictures of 12 MP with a wide angle. 

Unfortunately, with such a high resolution, a small distortion of the pictures could 

not be avoided. However, this distortion was corrected for using the software Adobe 

Photoshop CS6. An example of the correction done is shown in figures 17 and 18 

during ‘day 6’ of the tests with Michael swimming using butterfly stroke. 

 

 

 

Figure 17: Original distorted picture. 

 



 33 

 

Figure 18: Final picture after correction of the distortion with Photoshop CS6. 

 

4.4.2 Wave height selection 

 

After correcting the distortion of the pictures, the next step consisted of selecting 

manually the water level position on the fixed red rulers. The selection was done for 

each of the 30 pictures in the series in order to obtain the water surface variation in 

time. 

 

This procedure was carried out using a routine from Matlab called “digitize07” that 

can be found in detail in the appendices. This routine made it possible to select the 

points needed on the pictures - after zooming in on the area wanted - and to obtain 

the digitized coordinates. 

 

Figure 19 shows how the water level position was selected with the help of the fix 

red rulers. The ruler on the left indicates how the incident wave is evolving in time - 

since it is located in the lane of the swimmer - whereas the ruler on the right 

indicates how the transmitted wave is evolving in time - since it is located in the 

empty lane -. 
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Figure 19: Example on how the wave height is manually selected for picture 20 of 

the series d5-br-ma-1. 

 

4.4.3 Conversion into real coordinates  

 

The coordinates for the water surface were defined on a plane that depended on the 

orientation of the camera. In order to get the real-world coordinates a transformation 

should be carried out based on the placement of the camera. Figure 20 provides a 

sketch of the experimental setup, where the camera is assumed to be oriented an 

angle  to the horizontal. In order to define the location of the water surface, the 

length z in Figure 20, that is, the distance from the top of the vertical bar to the 

water surface, is required. However, digitizing the image will yield the length z’, 

which is z projected on the camera plane. 
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Figure 20: Sketch of measurement setup and definition of quantities needed to 

convert digitized lengths to real-world lengths. 

 

From geometry a relationship may be derived between z and z’. It is assumed that 

xi, h, and  are known and z’ is given from the digitized image. The angle  is 

calculated from: 

 

                                                                                                         (10)                  

 

Using the law of sines: 

 

                                                                                               (11) 

 

Furthermore,  = /2- and introducing ’ =  + /2, the previous expression may 

be writen as: 
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Expanding the numerator gives: 

 

                                                               (13) 

 

Additional expansion yields: 

 

                                                                             (14) 

 

Substituting Eqs.  13 and 14 into Eq. 12 results in: 

 

                                                                                          (15) 

 

Replacing tan  in Eq. 15 using Eq. 10 gives after some rearrangement: 

 

                                                                                       (16) 

 

Thus, using Eq. 16 the real length z may be derived from the digitized length z’ and 

information about the camera placement. Knowing xi, h, and , the conversion 

factor is constant and the relationship between z and z’ becomes a simple linear 

function. To this factor should another constant be added that relates distances 

obtained in the relative coordinate system used for the digitization to real-world 

distances. This constant was obtained through calibration against known distances 

from markings on the vertical bars. 

 

 

4.5 Analysis 

The real coordinates obtained after conversion were used to derive the evolution of 

the wave in time. Each series of 30 pictures taken during 3 seconds allowed for 

constructing plots similar to those in figure 21 and figure 22. The left bar located in 

the lane of the swimmer will give the evolution of the incident wave (red in the 
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figures), while the right rod located in the empty lane will give the evolution of the 

transmitted wave that has been damped (blue in the figures). 

 

 

 

Figure 21: Incident and transmitted wave from experimental case d5-br-ma-1. 
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Figure 22: Incident and transmitted wave from experimental case d4-br-na-3. 

 

Figures 21 and 22 show the coordinates of some characteristics points in the graphs, 

which make it possible to determine the incident wave height     and the 

transmitted wave height       The characteristic coefficients defined previously can 

be obtained from (values given in table 2): 

 

   
        

   
        : Damping coefficient  

   
    

   
  : Transmission coefficient 

 

Series 
H 

(cm) 
M 

(Kg) 
v 

(m/s) 
Ti 
(s) 

To 
(s) 

Hi 
(cm) 

Ho 
(cm)    (%)    (%) 

d5-br-ma-1 168 63 1,15 0,7 0,6 7,86 2,82 64 36 

d4-br-na-3 177 70 0,83 0,8 1,1 5,86 1,29 78 22 

Table 2: Analysis of results from two experimental cases (data shown in figure 21 

and figure 22). 
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Table 2 compares the efficiency of the swimming lines for the two experimental 

cases d4-br-na-3 and d5-br-ma-1. It can be deduced that the swimming lines were 

more efficient for the series from day 4 than for the series from day 5, since only 

about 22 % of the wave height was transmitted (78% of it was damped) for the 

former case.  

 

One can arguably assume that the gold version of the swimming lines used in day 4 

is simply more efficient in damping waves than the standard version used in day 5. 

However, it should be noted that these two series include different swimmers of 

different shapes, also swimming at different speeds. Apart from the type of line 

used, several other parameters will influence the damping efficiency. Those 

parameters are discussed in depth in section 5. 
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5 Data Analysis Results  
 

In this section, the efficiency of swimming lines to dampen waves generated by 

swimmers will be analysed and discussed. Initially, some important general 

properties will be studied like the consistency of the period, the transmission 

coefficient, and the damping coefficient. 

 

Furthermore, four important parameters will be analysed which are the speed of the 

swimmer, the diameter of the swimming line, the tension in the wire holding the 

line, and the swimming stroke employed. Indeed, the comparison between the 

competitor racing lane standard and the competitor racing lane gold, as well as the 

swimmer’s speed and the different tension in the wire, will help to derive some 

general trends and principles concerning the behaviour of the lines. Consequently, 

those principles may be applied to improve the efficiency of the current racing lines 

manufactured by the company. 

 

5.1 Period comparison 

The wave period is one of the most important parameters, if not the most important 

one regarding the wave transmission. It was calculated before and after the waves 

impinge on the swimming line. The wave period was expected not to change since it 

is the same wave that is being analysed on both sides of the line. Figure 23 shows a 

clear linear relationship between the incident wave period Ti and the transmitted 

wave period To. The range of the period goes from 0.4s to 1s and the standard 

deviation is around 0.1s. 

 

This period comparison was carried out for all the series analysed experimentally, 

which gives some credibility to the rest of the analysis demonstrating that the same 

waves were studied before and after damping. Finally, figure 23 shows only 23 

points even though this comparison was made for all of the 93 time series. 

However, the explanation is that a large number of series have the same incident 

and transmitted wave period. 
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5.2 Transmission coefficient 

The transmission coefficient   , as defined previously, is the ratio between the 

transmitted wave height and the incident wave height (employing the maximum 

wave height in the time series). It indicates the percentage of the wave that is being 

transmitted to the adjacent lane. The lower this coefficient is, the more efficient is 

the swimming line. This coefficient was calculated for all the series and was first 

studied without distinguishing between different swimmers, their speed, their stroke 

etc. 

 

The results are shown in figure 24, which displays a scattered area of points that 

have, however, a certain structure or tendency. A linear fit was employed, which 

gives a first overall, estimate of    that is approximately 32%, implying that 68%
4
 of 

the waves is being damped. 

                                                      
4
 In reality this value should be slightly lower since it includes a part of the 

reflected wave. However, in the study the reflected part was assumed to be 

negligible compared to the transmitted one as confirmed by visual 

observations. 

Figure 23: Relationship between incident and transmitted wave period. 
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5.3 Damping coefficient 

The damping coefficient was deduced for the waves in each time series of pictures 

using the transmission coefficient calculated previously based on the image 

analysis. Swimming line manufacturers always try to produce swimming lines with 

a higher damping coefficient. It represents the percentage of the waves that is being 

absorbed or dissipated by the line.  

 

Figure 25 displays a histogram that describes the distribution of the damping 

coefficient for the 93 different experimental cases studied. It shows that the median 

damping coefficient is approximately       , whereas the average of the 93 

cases yields a mean value of       . 

 

 

Figure 24: Incident and transmitted wave heights for all experimental cases studied. 
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5.4 Speed effects of the swimmers 

The speed of the swimmer is certainly one of the most interesting parameters to 

analyse. The transmission coefficients were calculated for the tests made during day 

3, 4, and 5 by amateur swimmers and compared with the ones obtained during day 7 

for the more professional swimmers.  

 

The results are illustrated in figure 26 and shows that for day 3, 4, and 5 the 

transmission coefficient is       , whereas it is approximately 25% for day 7. 

Thus, the swimming lines are twice as efficient when the swimmers are swimming 

at higher speeds (1.5m/s on average for day 7) compared to when they are 

swimming at lower speeds (0.95m/s on average for day 3, 4, and 5). 

 

In other words, figure 26 shows that the slope - which represents    - is the same for 

day 3, 4, and 5 and, but it is much steeper than the slope obtained for day 7. Since 

the slope is the same for day 3, 4, and 5, it proves that despite using different lines 

Figure 25: Histogram showing the distribution of the damping coefficient for the experimental cases 

studied 



 44 

(day 5), the damping coefficient is still the same for low swimming speeds. 

Consequently, the speed could be considered as a predominant factor over the type 

of swimming lines. 

 

 

5.5 Comparison of different swimming lines 

In this section, the efficiencies of the two different types of competitor racing lines 

were compared. The standard version of the lines that was used in the tests during 

day 5 is compared to the gold version used in the tests the other days.  

 

Figure 27 illustrates the transmission coefficient for the standard line (data points in 

red), which is approximately       , whereas for the golden version of the lines 

(data points in blue) the coefficient is       .  

 

The gold version of the swimming lines appears to be twice as efficient as the 

standard version, which can probably be explained by their diameter being 
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Figure 26: Transmitted wave height as a function of incident wave height for different speeds during 

days 3, 4, 5, and 7. 
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considerably larger (15cm compared to 10cm, respectively). There seems to be an 

almost linear relationship between the diameter of the swimming line and the 

transmission coefficient. Nevertheless, more detailed investigations should be made 

on a wider range of geometries to confirm these first results. Also, as pointed out in 

Section 5.4, there is an effect of the speed. 

 

5.6 Effects of the tension in the wire 

A parameter that is less intuitive but that could play a crucial role in the damping 

efficiency of the lines is the tension in the wire holding it. This parameter was tested 

during day 7 of the experiments using the same swimmers. Seven different 

swimmers were asked to swim employing four different strokes with a normal, 

‘soft’ tension in the wire during the first two rounds of testing. Before doing a last 

round of tests, the tension was increased to its maximum - denoted as ‘hard’- in 

order to see the effects on the damping from the lines. 

The analysis of this parameter is mainly qualitative, since there was no equipment 

available to measure the tension in the swimming line. The results are shown in 

figure 28. It can be seen from this figure that when the tension is increased the 

Figure 27: Transmitted wave height as a function of incident wave height for the two swimming lines 

tested, the standard version (10cm) and the gold version (15cm). 
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damping efficiency of the lines decreases considerably. Indeed, the transmission 

coefficient changes from        for the ‘soft’ tension to        for the ‘hard’ 

tension.  

 

The explanation for this phenomenon is that when the tension is too high, the 

swimming lines lose their small horizontal displacement that is used to absorb a part 

of the wave energy. Indeed, it acts like one single stiff element, which reduces 

substantially the damping efficiency. 

 

 

5.7 Influence of swimming stroke 

In order to compare the different swimming strokes studied, that is, crawl, breast, 

backstroke, and butterfly, the focus was put on the speed and the maximum wave 

height for each type of stroke. 

 

                                                                                                                               

Figure 28: Transmitted wave height as a function of incident wave height for 'soft' and 'hard' 

tension in the line. 
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 Figure 29 illustrates the relationship between the swimming speed and the 

maximum wave height generated for the four different strokes studied. It can be 

observed that when the swimmer’s speed increases, the maximum wave height 

increases with it. However, what is surprising is that this growth is very similar four 

all kind of strokes, as indicated by the fact that the slopes of the lines in the figure 

29 are more or less parallel. 

 

Furthermore, it can be seen that the stroke that produces the highest waves is 

butterfly, followed by crawl, back stroke, and finally breast. It is understandable, 

since the butterfly stroke is the one that requires the most energy from the swimmer. 

Thus, there is a higher potential for the energy produced by the swimmer to be 

transformed it into surface waves. 
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Figure 29: Relationship between swimming speed and generated maximum wave height for the four 

different swimming strokes investigated (crawl, breast, backstroke, and butterfly). 
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6 Conclusions 
 

In summary, it was observed that the gold version of the swimming lines studied 

were twice as efficient in damping the waves generated by the swimmer compared 

to the standard version. It can partly be explained by the substantially larger 

diameter. A potential improvement for the current lines would be to manufacture a 

new type with a larger diameter, since the wave-damping efficiency seems to 

improve linearly with the size of the swimming lines. However, it is expected that 

there is an upper limit to this increase that should be investigated through additional 

studies. 

 

Swimming lines were in general more efficient for professional swimmers rather 

than for amateurs. Indeed, the efficiency of the lines was considerably greater for 

high velocities associated with the professional swimmers. Consequently, for the 

crawl stroke, which in general is the fastest swimming style, the lines were very 

effective. The same remark could be made for the butterfly stroke, but for a 

different reason since it is the stroke that generates the highest waves. The 

swimming line was slightly less effective for back stroke and breast stroke. 

 

The comparison of wave periods showed that the image procession method and the 

experimental tests done in general gave relevant results, even though the procedure 

itself was long and required meticulous work. 

 

Indeed, one of the potential improvements of the measurement system could be to 

invest in capacitance or resistance gages, or laser technique, instead of using fixed 

vertical bars with rulers. This would avoid the tedious work of manually digitizing 

the water surface elevation. Such solutions have two major benefits: on one hand, it 

will save a considerable amount of time and therefore makes it possible to obtain 

more results in a shorter time; on the other hand the accuracy of the data collected 

will be greatly improved as well. 

 

To sum up, more advanced tests, done on a wider scale would be necessary to 

confirm the first general principles observed in this investigation that has not been 

studied experimentally in detail before. 
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9 Appendices 
 

9.1 Cases investigated 

The lines in blue refer to the series that have some data missing. Sometimes it was 

difficult to extract water level information, which in turn implied uncertainties 

regarding the wave period and the wave height. 

 

Series Stroke Name 
Height 
(cm) 

Weight 
(Kg) 

V 
(m/s) 

   
(s) 

   
(s) 

Hin 
(cm) 

Hout 
(cm) 

d3-cr-ra-1 Crawl Raphaello 180 75 0,83 0,6 0,8 7,02 1,84 

d3-cr-ra-1' Crawl Raphaello 180 75 0,83 0,6 0,8 7,03 1,84 

d3-cr-ra-2 Crawl Raphaello 180 75 0,89 0,6 0,7 5,83 2,75 

d3-cr-ra-3 Crawl Raphaello 180 75 0,78 0,5 0,6 5,8 1,26 

d3-cr-ra-4 Crawl Raphaello 180 75 0,89 1 1 7,52 3,32 

                    

d4-br-em-3 Breast Emma 165 57 0,96 0,5 0,4 3,38 1,5 

d4-br-em-4 Breast Emma 165 57 0,83 0,6 0,6 3,59 1,44 

d4-br-em-5 Breast Emma 165 57 0,83 0,4 0,6 2,99 1,09 

                    

d4-cr-jo-1 Crawl Joel 191 85 0,96 0,6 0,6 5,28 2,13 

d4-cr-jo-3 Crawl Joel 191 85 1,04 0,6 0,6 6,96 3,86 

d4-cr-jo-5 Crawl Joel 191 85 1,04 0,6 0,6 6,37 3,68 

d4-br-jo-2 Breast Joel 191 85 1,04         

d4-br-jo-3 Breast Joel 191 85 1,04 0,5 0,6 5,26 2,85 

d4-br-jo-4 Breast Joel 191 85 1,04 0,5 0,6 5,88 2,69 

                    

d4-cr-na-1 Crawl Nadim 177 70 1,39 0,6 0,7 6,51 2,22 

d4-cr-na-2 Crawl Nadim 177 70     0 3,95 1,2 

d4-cr-na-3 Crawl Nadim 177 70 1,39 0,7 0,8 5,73 1,97 

d4-br-na-1 Breast Nadim 177 70 1,04 0,7 0,8 4,48 1,61 

d4-br-na-2 Breast Nadim 177 70 0,89 0,7 0,7 5,39 2,32 

d4-br-na-3 Breast Nadim 177 70 0,83 0,8 1,1 5,86 1,29 

                    

d5-cr-ma-1 Crawl Maike 168 63 1,25 0,4 0,5 5,2 1,65 
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d5-cr-ma-2 Crawl Maike 168 63 1,25         

d5-br-ma-1 Breast Maike 168 63 1,15 0,7 0,6 7,86 2,82 

d5-br-ma-2 Breast Maike 168 63 0,94 0,6 0,7 4,71 2,77 

d5-br-ma-3 Breast Maike 168 63 0,74 0,7 0,8 6,52 4,73 

d5-ba-ma-1 Back Maike 168 63 0,89 0,6 0,5 4,61 1,93 

d5-ba-ma-2 Back Maike 168 63 0,96 0,6 0,6 4,58 1,81 

d5-ba-ma-3 Back Maike 168 63 1,04 0,4 0,6 4,51 1,39 

                    

d5-cr-mar-1 Crawl Marten 185 88 1,04 0,7 0,6 3,2 1,34 

d5-cr-mar-2 Crawl Marten 185 88 0,96 0,8 0,9 7,58 2,97 

d5-cr-mar-3 Crawl Marten 185 88 0,96         

d5-br-mar-1 Breast Marten 185 88 0,96 0,7 0,7 4,15 1,23 

d5-br-mar-2 Breast Marten 185 88 0,96 0,8 0,6 4,95 1,35 

d5-br-mar-3 Breast Marten 185 88 0,83 0,6 0,8 3,33 1,89 

d5-ba-mar-1 Back Marten 185 88 0,96 0,7 0,7 6,56 3,385 

d5-ba-mar-2 Back Marten 185 88 0,83 0,7 0,8 6,33 3,61 

                    

d6-cr-mic-1 Crawl Michael 175 72 1,39 0,7 0,7 8,11 2,57 

d6-cr-mic-2 Crawl Michael 175 72 1,04 0,6 0,6 4,6 1,17 

                    

d7-cr-pa-1 Crawl Pablo 185 78 1,92 0,8 0,8 7,55 2,41 

d7-cr-pa-2 Crawl Pablo 185 78 1,78 0,6 0,8 7,31 2,82 

d7-cr-pa-3 Crawl Pablo 185 78 1,92 0,8 0,8 9,5 3,78 

d7-br-pa-1 Breast Pablo 185 78 1,25 0,6 0,7 7,25 2,91 

d7-br-pa-3 Breast Pablo 185 78 1,47 0,7 0,8 7,94 1,66 

d7-ba-pa-1 Back Pablo 185 78 1,67 0,8 0,7 4,82 1,3 

d7-bu-pa-2 Butterfly  Pablo 185 78 1,56 0 0 0 0 

d7-bu-pa-3 Butterfly  Pablo 185 78 2,08 0,8 0,8 6,79 3,45 

                    

d7-cr-gu-1 Crawl Gustav 182 63 1,56 0,6 0,7 6,29 3,03 

d7-br-gu-1 Breast Gustav 182 63 1,25 0,5 0,5 5,55 2,06 

d7-br-gu-2 Breast Gustav 182 63 1,39 0,6 0,6 4,7 1,17 

d7-br-gu3 Breast Gustav 182 63 1,32 0 0 0 0 

d7-ba-gu-1 Back Gustav 182 63 1,56 0,5 0,6 7,59 1,43 

d7-ba-gu-3 Back Gustav 182 63 1,39 0 0 9,24 2,35 
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d7-bu-gu-1 Butterfly  Gustav 182 63 1,67 0 0 5,27 2,93 

d7-bu-gu-3 Butterfly  Gustav 182 63 1,67 0,6 0,8 6,1 2,1 

                    

d7-cr-ag-2 Crawl Agnes 175 70 1,67 0,8 0,9 12,17 3,11 

d7-cr-ag-3 Crawl Agnes 175 70 1,78 0,7 0,8 7 1,61 

d7-br-ag-1 Breast Agnes 175 70 1,47 0,6 0,7 5,94 2,03 

d7-br-ag-3 Breast Agnes 175 70 1,39 0,7 0,8 9,17 2,82 

d7-ba-ag-3 Back Agnes 175 70 1,39 0 0 0 0 

d7-bu-ag-2 Butterfly    175 70 1,47 0,7 0,5 3,34 1,64 

                    

d7-cr-pe-1 Crawl Peter 179 68 1,92 0,8 0,9 7,1 2,19 

d7-cr-pe-2 Crawl Peter 179 68 1,67 1 1 7,25 2,19 

d7-br-pe-1 Breast Peter 179 68 1,32 0,9 0,8 3,37 1,43 

d7-br-pe-3 Breast Peter 179 68 1,39 0 0 0 0 

d7-ba-pe-2 Back Peter 179 68 1,14 0,8 0,9 7,21 2,49 

d7-ba-pe-3 Back Peter 179 68 1,25 0,5 0,6 3,97 1,33 

d7-bu-pe-2 Butterfly  Peter 179 68 1,56 0,5 0,5 6,35 2,41 

d7-bu-pe-3 Butterfly  Peter 179 68 1,67 0,6 0,6 6,09 1,48 

                    

d7-cr-si-2 Crawl Simon 182 77 1,67 0,7 0,8 7,32 1,62 

d7-cr-si-3 Crawl Simon 182 77 1,67 0,5 0,6 5,6 1,35 

d7-br-si-1 Breast Simon 182 77 1,25 0,7 0,8 5,99 1,6 

d7-br-si-3 Breast Simon 182 77 1,14 0,6 0,7 9,84 2,67 

d7-ba-si-1 Back Simon 182 77 1,56 0,6 0,6 6,2 1,98 

d7-ba-si-3 Back Simon 182 77 1,47 0 0 0 0 

                    

d7-cr-jos-1 Crawl Josephina 169 58 1,67 0 0 0 0 

d7-br-jos-1 Breast Josephina 169 58 1,14 0,9 0,8 6,73 1,63 

d7-br-jos-2 Breast Josephina 169 58 1,19 0,7 0,9 6,44 2,36 

d7-br-jos-3 Breast Josephina 169 58 1,25 0,8 0,9 8,07 3,97 

d7-ba-jos-1 Back Josephina 169 58 1,32 0,5 0,6 5,91 2,27 

d7-ba-jos-2 Back Josephina 169 58 1,39 0 0 6,54 1,24 

d7-ba-jos-3 Back Josephina 169 58 1,67 0 0 0 0 

d7-bu-jos-1 Butterfly  Josephina 169 58 1,56 0,6 0,6 6,76 1,61 

d7-bu-jos-2 Butterfly  Josephina 169 58 1,56 0 0 0 0 
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d7-bu-jos-3 Butterfly  Josephina 169 58 1,39 0,9 0,9 3,83 1,28 

                    

d7-cr-be-2 Crawl Bella 171 72 1,56 0,6 0,7 6,66 1,7 

d7-cr-be-3 Crawl Bella 171 72 1,31 0 0 0 0 

d7-br-be-1 Breast Bella 171 72 1,39 0 0 0 0 

d7-br-be-2 Breast Bella 171 72 1,25 0 0 0 0 

d7-br-be-3 Breast Bella 171 72 1,25 0,9 0,9 6,06 1,52 

d7-ba-be-1 Back Bella 171 72 1,32 0 0 0 0 

d7-bu-be-1 Butterfly  Bella 171 72 1,56 0,9 0,9 4,74 1,39 

d7-bu-be-3 Butterfly  Bella 171 72 1,67 0,8 0,9 8,54 2,82 

Table 3: Complete table showing the basic results extracted from the 93 series of 

pictures taken from day 3 to day 7. 
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9.2 Wave height selection 

The Matlab routine called “digitize07.m” which made the water level digitization 

and subsequent wave height selection possible: 
 

function digitize07(varargin) 
%DIGITIZE07  Digitze points on an image using the mouse   
%   DIGITIZE07(filename) displays an image and allows the 

user to  
%   digitize points using the mouse, similar to MATLAB's 

built-in GINPUT 
%   and similar to other digitizers available at the MATLAB 

Central File 
%   Exchange: 'digitize','digitize2.m', etc.  The main new 

feature of 
%   this version is that points are draggable; this permits 

fine tuning 
%   of already digitized points using the zoom feature.   
%    
%   Other features adopted from previous versions include: 
%       - Import previously digitized points 
%       - Export digitized points to the workspace or file 
%       - Interactively change the marker color, size, and 

shape 

%       - Pin digitized points (i.e. toggle draggable mode) 
%       - Delete unwanted points by right-clicking on the 

point 
%       - Fully interactive GUI:  Errors are reported to 

dialog boxes 
%         rather than to the Workspace 
% 
%   DIGITIZE07(filename) opens an interactive GUI and allows 

the user to 
%   digitize an unlimited number of points.  The file must be 

an image that 
%   is recognized by IMREAD 

% 
%   DIGITIZE07 by itself opens the digitizer and prompts the 

use to load an image file  
%  
% 
%USING THE GUI: 
% (a) Digitizing points.  Point-and-click (left or right 

button to create a new point). 
% (b) Drag a new point.  Hold the button you used to create 
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the point and 
%     drag it to a new location.  A point may be dragged 

anywhere within 
%     the axes boundaries. 
% (c) Drag an existing point.  Left-click and hold to drag. 
% (d) Disable/enable drag.  Use the pin toggle button on the 

left of the 
%     figure's toolbar.  This will pin all existing points.  

New points are 
%     still draggable. 
% (e) Other features.  Other menu features and the zoom tool 

are self-explanatory.   

% 
% 
%   See also GINPUT 
% 
% 
%   Acknowledgements: 
%   This was developed based on the functions "draggable" and 

"digitize2" 
%   which are both available from the MATLAB Central File 

Exchange. 
% 
%   Author: 

%   Todd C Pataky (0todd0@gmail.com)  ['zero' todd 

'zero'@gmail.com] 
%   18-April-2007 

  

  

%IMPLEMENTATION NOTES: 
%   1. The handles of digitized points are stored as 

application data in 
%   the image's axes.  These handles are passed into 

different callback 
%   functions which allows for easy implementation of 

dragging using the 

%   figure properties: WindowButtonMotionFcn and 

WindowButtonUpFcn 
%   2. The digitizer uses Figure 1 to open the image.  If 

Figure 1 already 
%   existis it will be cleared. 
%   3. Features for a future version: 
%       - Display point labels 
%       - Reorder points 
%       - Connect points 
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%       - Create reference axes 
%       - Calibration (scale image coordinates to mm, m, 

etc.) 
% 

  

  

  

  

  

%% PRELIMINARY DATA CHECKS 

  

%%%%%%%%%%%%%%%%%%%%% 
%(1) Ensure proper argument specification: 
%%%%%%%%%%%%%%%%%%%%% 
switch nargin 
    case 0 
        initializeFigure  %see INITIALIZATION FUNCTIONS below 
        initializeAxes([]) 
    case 1 
        try  %Attempt to initiate the GUI: 
            imfinfo(varargin{1});  %This will generate an 

error if not recognized by IMREAD 
            initializeFigure 

            initializeAxes(varargin{1}) 
        catch 
            fprintf('\n\n\nError opening file.\n') 
            fprintf('  Please ensure that the file exists\n') 
            fprintf('  and that its format is recognized by 

''imread.m''\n'); 
            error(lasterror) 
        end 
    otherwise 
        error('Maximum of one input argument.') 
end 
%%%%%%%%%%%%%%%%%%%%% 

%(2) Check Workspace for existence of 'XY': 
%%%%%%%%%%%%%%%%%%%%% 
if evalin('base','exist(''XY'');')==1 
    msgbox(['The variable XY exists in the Workspace.                               

',... 
        'Selecting ''Export XY''...''To Workspace'' will 

overwrite the current XY data.'],... 
        'Warning!','warn') 
end 
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%% INITIALIZATION FUNCTIONS 

  

function initializeFigure 
figure(1) 

clf 
set(gcf,'numberTitle','off','name','Digitize07') 
set(gcf,'menubar','none','closeRequestFcn',@closeFigure) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%CREATE MENU 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%(a) Load functions 
%%%%%%%%%%%%%%%%%%%%%%%%% 
mh = uimenu(gcf,'Label','Load','separator','on'); 
uimenu(mh,'Label','Image...','callback',@callback_loadImage); 
uimenu(mh,'Label','Points...','callback',@callback_loadPoints

); 
%%%%%%%%%%%%%%%%%%%%%%%%% 

%(b) Export functions 
%%%%%%%%%%%%%%%%%%%%%%%%% 
mh = uimenu(gcf,'Label','Export XY'); 
uimenu(mh,'label','To 

Workspace','callback',@callback_export2Base) 
uimenu(mh,'label','To .mat 

File...','callback',{@callback_export2File,'.mat'},'separator

','on') 
uimenu(mh,'label','To .dat 

File...','callback',{@callback_export2File,'.dat'}) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%(c) Marker style functions 

%%%%%%%%%%%%%%%%%%%%%%%%% 
mh = uimenu(gcf,'Label','Marker Style'); 
mh1 = uimenu(mh,'Label','Color'); 
    uimenu(mh1,'Label','Static 

Color...','callback',@callback_changeStaticColor); 
    uimenu(mh1,'Label','Dragging 

Color...','callback',@callback_changeDragColor); 
uimenu(mh,'Label','Size...','callback',@callback_changeMarker

Size); 
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mh2 = uimenu(mh,'Label','Symbol'); 
    uimenu(mh2,'Label','+  Plus 

sign','callback',{@callback_changeSymbol,'+'}) 
    uimenu(mh2,'Label','o  

Circle','callback',{@callback_changeSymbol,'o'}) 
    uimenu(mh2,'Label','*  

Asterisk','callback',{@callback_changeSymbol,'*'}) 
    uimenu(mh2,'Label','.  

Point','callback',{@callback_changeSymbol,'.'}) 
    uimenu(mh2,'Label','x  

Cross','callback',{@callback_changeSymbol,'x'}) 
    uimenu(mh2,'Label','s  

Square','callback',{@callback_changeSymbol,'s'}) 
    uimenu(mh2,'Label','d  

Diamond','callback',{@callback_changeSymbol,'d'}) 
    uimenu(mh2,'Label','^  Triangle 

(up)','callback',{@callback_changeSymbol,'^'},'separator','on

') 
    uimenu(mh2,'Label','v  Triangle 

(down)','callback',{@callback_changeSymbol,'v'}) 
    uimenu(mh2,'Label','>  Triangle 

(right)','callback',{@callback_changeSymbol,'>'}) 
    uimenu(mh2,'Label','<  Triangle 

(left)','callback',{@callback_changeSymbol,'<'}) 

    uimenu(mh2,'Label','p  

Pentagram','callback',{@callback_changeSymbol,'p'},'separator

','on') 
    uimenu(mh2,'Label','h  

Hexagram','callback',{@callback_changeSymbol,'h'}) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%CREATE TOGGLE ICONS: 
%%%%%%%%%%%%%%%%%%%%%%%%% 
ht = uitoolbar; 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%(a) Pin points 
%%%%%%%%%%%%%%%%%%%%%%%%% 

[x,map] = 

imread([matlabroot,'/toolbox/matlab/icons/pin_icon.gif']); 
cdata = ind2rgb(x,map); 
cdata(cdata==1)=NaN; 
uitoggletool(ht,'cdata',cdata,'TooltipString','Pin 

Points',... 
    'onCallback', 'setappdata(gca,''pinPoints'',1)',... 
    'offCallback','setappdata(gca,''pinPoints'',0)'); 
%%%%%%%%%%%%%%%%%%%%%%%%% 
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%(b) Zoom tool 
%%%%%%%%%%%%%%%%%%%%%%%%% 
fname = [matlabroot,'/toolbox/matlab/icons/zoomplus.mat']; 
load(fname)  %var name: 'cdata' (stored in zoomplus.mat) 
uitoggletool(ht,'cdata',cdata,'TooltipString','Zoom','clicked

Callback','zoom') 

  

  

  

  

function initializeAxes(fname,varargin) 

axes('position',[0.05 0.05 0.9 0.9]) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%Initialize application data: 
%%%%%%%%%%%%%%%%%%%%%%%%% 
setappdata(gca,'axlim',[])  %required for dragging points 
setappdata(gca,'H',[]) 
setappdata(gca,'pinPoints',0) 
if nargin==1 
    markerSpecs = struct('statColor',[0 0 1],'dragColor',[1 0 

0],'size',6,'style','o'); 
    setappdata(gca,'markerSpecs',markerSpecs) 
else setappdata(gca,'markerSpecs',varargin{1}) 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 
%Create message or display image 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if isempty(fname) 
    th = text(0.5,0.5,'Please load an image to begin.'); 
    

set(th,'fontsize',14,'horizontalalignment','center','vertical

alignment','middle',... 
        'backgroundcolor',0.9*[1 1 1],'edgecolor','k') 
    axis off 

else displayImage(fname) 
end 

  

  

  

  

  

function displayImage(fname) 
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X = imread(fname); 
ih = imagesc(X); 
set(ih,'buttonDownFcn',@d07_createPoint) 
axis equal tight 
hold on 
axlim = [get(gca,'xlim') get(gca,'ylim')]; 
setappdata(gca,'axlim',axlim) 

  

  

  

  

%% MAIN DIGITIZING CODE 

  

function d07_createPoint(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
xy = get(gca,'CurrentPoint');  %CurrentPoint yields two 

output rows 
xy = xy(1,1:2);   
h = d07_plotPoints(xy); 
setappdata(gca,'H',[getappdata(gca,'H'); h]) 
%Enable dragging until button is released: 
set(gcf,'WindowButtonMotionFcn',{@d07_dragPoint,h},'WindowBut

tonUpFcn',{@d07_buttonUp,h}) 

  

  

  

  

function [H] = d07_plotPoints(XY) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
H = zeros(size(XY,1),1); 
for k=1:size(XY,1) 
    H(k) = plot(XY(k,1),XY(k,2),'.'); 
    %Create context menu for deleting points: 
    cmenu = uicontextmenu; 

    uimenu(cmenu, 'Label', 'Delete this point','Callback', 

{@deletePoint,H(k)}); 
    uimenu(cmenu, 'Label', 'Delete all points...','Callback', 

@deleteAllPoints,'separator','on'); 
    set(H(k),'UIContextMenu', cmenu) 
end 
markerSpecs = getappdata(gca,'markerSpecs'); 
set(H,'Color',markerSpecs.statColor,... 
    'MarkerSize',markerSpecs.size,... 
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    'Marker',markerSpecs.style,... 
    'ButtonDownFcn',@d07_clickPoint); 

  

         

  

  

function d07_clickPoint(h,varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if ~getappdata(gca,'pinPoints') 
    markerSpecs = getappdata(gca,'markerSpecs'); 
    set(h,'color',markerSpecs.dragColor) 

    

set(gcf,'WindowButtonMotionFcn',{@d07_dragPoint,h},'WindowBut

tonUpFcn',{@d07_buttonUp,h}) 
end 

  

  

  

  

  

function d07_dragPoint(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 

h = varargin{3}; 
markerSpecs = getappdata(gca,'markerSpecs'); 
set(h,'color',markerSpecs.dragColor) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Ensure that the dragged point lies within the axis bounds: 
%%%%%%%%%%%%%%%%%%%%%%%%% 
axlim = getappdata(gca,'axlim'); 
X = get(gca,'currentpoint'); 
[x,y] = deal(X(1,1),X(1,2)); 
if x<axlim(1) 
    x=axlim(1); 
elseif x>axlim(2) 

    x=axlim(2); 
end 
if y<axlim(3) 
    y=axlim(3); 
elseif y>axlim(4) 
    y=axlim(4); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Update marker position 
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%%%%%%%%%%%%%%%%%%%%%%%%% 
set(h,'xdata',x,'ydata',y) 

  

  

  

  

function d07_buttonUp(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
h = varargin{3}; 
markerSpecs = getappdata(gca,'markerSpecs'); 
set(h,'color',markerSpecs.statColor) 

set(gcf,'WindowButtonMotionFcn',[],'WindowButtonUpFcn',[]) 

  

  

  

  

%% CALLBACK FUNCTIONS 

  

function callback_loadImage(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Check if there are existing points 
if ~isempty(getappdata(gca,'H')) 

    button = questdlg(['Loading a new image will clear 

current points.  ',... 
        'OK to continue?'],'Warning!!','OK','Cancel','OK'); 
    if isequal(button,'Cancel') 
        return 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Get an image file 
[fname,pathName] = uigetfile('*.*'); 
if isequal(fname,0) 
    return 

end 
markerSpecs = getappdata(gca,'markerSpecs'); 
delete(gca) 
initializeAxes([pathName,fname],markerSpecs) 

  

  

  

  

function callback_loadPoints(varargin) 
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%%%%%%%%%%%%%%%%%%%%%%%%% 
% Check if an image has been loaded 
if ~isempty(findobj(gca,'type','text')) 
    errordlg('Please load an image before loading 

points.','Error') 
    return 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Check if there are existing points 
if ~isempty(getappdata(gca,'H')) 
    button = questdlg(['Loading new points will clear current 

points.  ',... 

        'OK to continue?'],'Warning!!','OK','Cancel','OK'); 
    if isequal(button,'Cancel') 
        return 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Get a points file 
[fname,pathName] = uigetfile({'*.dat','Data files (*.dat)';  

'*.mat','MAT files (*.mat)'}); 
if isequal(fname,0) 
    return 
end 

%%%%%%%%%%%%%%%%%%%%%%%%% 
% Check that the data are in the correct format 
ext = fname(end-3:end); 
switch ext 
    case '.dat' 
        XY = load([pathName,fname]); 
        if size(XY,2)~=2 
            errordlg('Data must be an m-by-2 

matrix.','Error') 
            return 
        end 
    case '.mat' 

        w = whos('-file',[pathName fname]); 
        if length({w(:).name})>1 
            errordlg('.mat file must contain only one 

variable.','Error') 
            return 
        elseif w.size(2)~=2 || length(w.size)~=2 
            errordlg('Data must be an m-by-2 matrix','Error') 
            return 
        else load([pathName,fname]) 
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             eval(['XY = ',w.name,';']) 
        end 
    otherwise 
        errordlg('Must only load .dat or .mat 

files.','Error') 
        return 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%Check that the data fall within the axes boundaries 
axlim = getappdata(gca,'axlim'); 
if min(XY(:,1)) < axlim(1) ||... 
        max(XY(:,1)) > axlim(2) ||... 

        min(XY(:,2)) < axlim(3) ||... 
        max(XY(:,2)) > axlim(4) 
    errordlg('Loaded points must be inside axes 

boundaries.','Error') 
    return 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%Delete old data: 
delete(getappdata(gca,'H')) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plot new data 
H = d07_plotPoints(XY); 

setappdata(gca,'H',H) 

  

  

  

  

  

  

  

function callback_export2Base(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
[XY] = getXY; 

if isempty(XY) 
    msgbox('No existing points.  Please digitize at least one 

point before exporting.',... 
        'Warning!','warn') 
else 
    assignin('base','XY',XY) 
    msgbox('Data exported to Workspace.  Variable name: 

''XY''') 
end 
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function callback_export2File(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Check for existing points 
[XY] = getXY; 
if isempty(XY) 
    msgbox('No existing points.  Please digitize at least one 

point before exporting.',... 

        'Warning!','warn') 
    return 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Get a file name for writing 
ext = varargin{3}; 
[fname,pathname] = uiputfile({['*',ext],[upper(ext(2:4)),' 

Files (',ext,')']}); 
if isequal(fname,0) 
    return 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 

% Check the file extension of the chosen file 
if ~isempty(findstr('.',fname)) 
    ext = fname(end-3:end); 
    if ~ismember(ext,{'.dat','.mat'}) 
        %the user has chosen a different file extension 
        errordlg('Please use the default extension.','Error') 
        return 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% Write data 
switch ext 

    case '.mat' 
        save([pathname,fname],'XY') 
        msgbox('Data exported.  Variable name: ''XY''') 
    case '.dat' 
        if isempty(findstr('.',fname)) 
            fname = [fname,'.dat']; 
        end 
        save([pathname,fname],'XY','-double','-ascii','-

tabs') 
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        msgbox('Data exported.') 
    otherwise 

         

end 

  

  

  

  

  

  

function callback_changeStaticColor(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
markerSpecs = getappdata(gca,'markerSpecs'); 
c = uisetcolor(markerSpecs.statColor,'Choose Marker Color'); 
if ~isequal(c,0) 
    markerSpecs.statColor = c; 
    set(getappdata(gca,'H'),'color',c) 
    setappdata(gca,'markerSpecs',markerSpecs) 
end 

  

  

  

  

function callback_changeDragColor(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
markerSpecs = getappdata(gca,'markerSpecs'); 
c = uisetcolor(markerSpecs.dragColor,'Choose Marker Color'); 
if ~isequal(c,0) 
    markerSpecs.dragColor = c; 
    setappdata(gca,'markerSpecs',markerSpecs) 
end 

  

  

  

  

  

function callback_changeMarkerSize(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
markerSpecs = getappdata(gca,'markerSpecs'); 
a = inputdlg({'Enter marker 

size:'},'',1,{num2str(markerSpecs.size)}); 
if ~isempty(a) 
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    a = str2double(a{1}); 
    try 
        H = getappdata(gca,'H'); 
        set(H,'markersize',a) 
        markerSpecs.size = a; 
        setappdata(gca,'markerSpecs',markerSpecs) 
    catch 
        err = lasterror; 
        errordlg(err.message,'Marker Size Error') 
        return 
    end 
end 

  

  

  

  

function callback_changeSymbol(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
symbol = varargin{3}; 
H = getappdata(gca,'H'); 
set(H,'marker',symbol) 
markerSpecs = getappdata(gca,'markerSpecs'); 
markerSpecs.style = symbol; 

setappdata(gca,'markerSpecs',markerSpecs) 

  

  

  

  

  

  

function deletePoint(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
h = varargin{3}; 
H = getappdata(gca,'H'); 

H(H==h)=[]; 
setappdata(gca,'H',H) 
delete(h) 

  

  

  

  

function deleteAllPoints(varargin) 
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%%%%%%%%%%%%%%%%%%%%%%%%% 
button = questdlg('OK to delete all 

points?','Warning!!','OK','Cancel','OK'); 
if isequal(button,'Cancel') 
    return 
end 
delete(getappdata(gca,'H')) 
setappdata(gca,'H',[]) 

  

  

  

  

  

function closeFigure(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
button = questdlg('Export data to Workspace before 

closing?',... 
    '','Export&Close','Close','Cancel','Export&Close'); 
switch button 
    case 'Export&Close' 
        [XY] = getXY; 
        assignin('base','XY',XY) 
        fprintf('\n\nData imported from Digitize2D:\n') 

        fprintf('   Name: ''XY''\n') 
        fprintf('   Size: [%.0f %.0f]\n\n',size(XY)) 
        delete(gcf) 
    case 'Close' 
        delete(gcf) 
    case 'Cancel' 
        return 
end 

  

  

  

  

  

  

  

%% UTILITY FUNCTIONS 

  

  

function [XY] = getXY 
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H = getappdata(gca,'H'); 
XY = [get(H,'xdata') get(H,'ydata')]; 
if length(H)>1 
    XY = cell2mat(XY); 
end 
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